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THE DYNAMICS OF A RIGID BODY UNDER IMPACT* 

V.A. SINITSYN 

The motion of an absolutely rigid body under impact (impulsive motion) is 
considered. The analogy between this motion and the motion of a rigid 
body in a fluid is pointed out: the influence of the inertial properties 
of the body on the motion is defined in both cases by three second-order 
surfaces. The role of these surfaces when a body moves in infinite fluid 
was established by Ehukovskii /l/. Using the moments of the impact pulses 
at the point of contact (the influence of rolling friction and revolving 
friction), the necessary conditions are obtained for the appearance of 
"tangential*' impact (TI). A well-known characteristic of TI is that the 
reaction assists in increasing the approach velocity of the points of 
contact of the colliding bodies, including the case when the initial 
approach velocity is zero ("collision without impact"). Previously /2-4/ 
studies of TI have only taken account of the impact pulse (the normal 
component of the reaction and sliding friction). The physical meaning 
of TI has been elucidated in a discussion of the "paradoxes" of dry 
friction, see 15, Appendix 2/, and in the popular literature /6/. In 
working devices TI often makes its appearance as dynamic selfbraking, 
and as unwanted cases of "sticking" and "seizing." 

We consider the motion of a rigid body which belongs to a system with ideal constraining 
links, linear with respect to the velocities (holonomic or non-holonomic). Let the impact 
action on the body be specified as a principal vector S and principal momentum L of the 
impact force momenta, reduced to some centre. As usual in the case of impact, we neglect 
displacements of the material particles of the system. As the basic coordinate system we 
take a fixed system whose origin coincides with the centre of reduction of the impact force 
momenta. Determination of the motion of the rigid body under impact amounts to finding the 
angular velocity 0: of the body and the velocity v of some pole. 

As the pole we take the point Oaf the body which coincides with the origin of the basic 
coordinate system (the position of the pole remains fixed during the impact, while its 
velocity varies from some value v- befoxe impact). We write the equations of the impulsive 
motion of the body (motion under impact) /7/ 

Here, Vtt Wit sr, Lf 0 = 1, 2, 3) are the projections of the vectors v,o,S,L on the axes 
of the fixed coordinate system. The coefficients of the matrices w,, $,Y are found by means 
of expressions for the kinetic energy Q of the reduced system (a quadratic form in the kinetic 
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enerw, expressed in terms of generalized velocities) (a is the matrix of inertial coefficients 
of the reduced system, and R is the number of independent generalized velocities ql',...,qn.) 

(q‘ - q’-)= a (q’ - q’_) 1; 20 (91’ - q,, . . . , qn’ - 4;) = za$ + 2@,, + 2& (2) 

With the functions Qi,@,,,CJ,, we associate three second-order surfaces 

X6: 6,,S2 f &,y' -,- &j,z' + 2'5,,!,z -,- 2&,2X + 26&y = Xb (& y, 2) := 1 (6 = a, p, ,‘) 0) 

The surfaces Xa, X@ are ellipsoids, since, with L = 0 and 3 = 0, the functions @, 
and ~D,,are respectively equal to twice the kinetic energy of the acquired velocities of the 
reduced system (2). 

We shall show that the role of the surfaces ;ca in the description of the impulsive 
motion of the body is similar to the role of the three surfaces in the motion of a rigid body 
in a fluid /l/ (we shall apply the names used by Zhukovskii to similar concepts). 

If the increment of the velocity of point C?is directed along the radius rr of the 
ellipsoid xX, then the momentum S and velocity increment Au in this direction are connected 
by the relation 

By analogy, p = rrz will be called the changed mass of the body in the direction ri. 
It follows from (4) that the ellipsoid xa is obtained by marking off a distance rl=V7 from 
the point 0 in the direction rl_ The changed mass in any direction is not less than the body 
mass, since, by Kelvin's theorem /a/, the kinetic energy of the acquired velocities of a 
system with links (in the case of preassigned increments ahead of the indicated points) is 
not less than the kinetic energy of the acquired velocities of a riqid body without links. 

If the impact action on the body is represented solely by an impulsive couple, whose 
plane is perpendicular to the radius rz of the ellipsoid '@ and communicates in the direction 

r2 an angular velocity increment ho, then 

By analogy, v = rz2 will be called the changed moment of inertia with respect to the r2 
axis. The ellipsoid x6 is obtained by marking off a distance ra = l/y in the direction ra 
from the point 0 (the ellipsoid of changed moments of inertia). On changing the pole, the 
ellipsoid of changed moments of inertia varies, but the changed moment of inertia with respect 
to any axis is never less than the moment of inertia of the rigid body about this axis (this 
is again proved by Kelvin's theorem). 

%y choosing the pole position we can arrange for the coefficients yij to be symmetrical 
with respect to the subscripts /l/. By analogy, we call this point central. For the central 
point, the surface xv is an ellipsoid or hyperboloid. We draw the radius vector rQ to a 
point of this surface. If the moment of the impulsive couple L is directed along rs, then, 
in addition to the angular velocity increment, which can be found from (51, an increment of 
the velocity (of the central point) (S = 0) occurs in the direction r3 

An conversely, if the momentum S acts along rs, in addition to the velocity increment 
there is an angular velocity increment 

Ao = Slrsz, IAo = S (A = raa) 

If the surface xv is a hyperboloid, then, in the direction of the generators of the 
asymptotic cone, the incrementeofthe velocity of the central point and of the angular 
velocity of the body are zero. 

In short, as in the case of the influence of a rigid body in a fluid on the motion 
communicated to it /I/, the entire influence of a rigid body and a system with ideal constrain- 
ing links on the impulsive motion is characterized by the three surfaces (3). These surfaces, 
and the surfaces considered in /l/, are mutual. 

Let us consider the conditions under which tangential impact (TI) /3/ occurs when a 
rigid body moves along a surface with friction. We assume that the body and surface are 
convex (there is a unique common tangent plane and a common normal at the point of contact), 
and that there are no active impact forces. We assume that the surface reaction consists of 
a force /2, 3/ and a couple. We locate the origin of the basic coordinate system at the 
point of contact, with the first two unit vectors of the basis in the tangent plane, and the 
third along the common normal within the body. We introduce as independent variable T in 
the equations of motion the momentum of the normal component N of the principal reaction 



vector (d% = Ndt). Then, for the component 
from (1) the equation 

du,ldz = a,,X -+- ussY + 
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v3 (where -Va is the approach velocity) we obtain 

where X, Y,M,, M,,M, are the projections of the force of friction, the moment of rolling 
friction and the moment of revolving friction , referred to the absolute value of the reaction 
normal component. 

To find the coefficients on the right-hand side of (6), we write the expression for the 
kinetic energy (2) 

e=-&+& A1M;8fBlMea+Cl~sa+2L)1EA2Ms~ (7) 

2~1~~~3 + zFl~l~3) 

fJ = ABC - ADa - BEa - CFa - SDEF, S2 = S,z $ S,a + 

Sa2 

A, = Aa -I- Bfa -+- Ce2 - 2Def - 2Eae - 2Faf 

D, = Aef + Bbd + Ccd - D (be + de) - E (cf + de) - 

F (be + df) 

(AIBIC,, D,E,F,; ABC, DEF, abc, def) 

a = BC - D’, d = AD 4- EF (abc, def; ABC, DEF) 

M = L - r x S; M = /I Ml, Ma, MS lITI r = II E, q, 5 j/T 

Here, M and P are the principal moment of the reaction momenta with respect to the 
centre of mass and the radius vector of the position of the centre of mass in the basi; 
coordinate system, A,B, C,D, E, F are the components of the inertia tensor for the centre 
of mass in axes parallel to the axes of the basic coordinate system and m is the mass of the 
body. The relations not written are obtained by circular permutation of the symbols shown in 
parentheses. 

From (7) we obtain the coefficients 

a 31 = LL-Y--%E~ + D,Erl - Err? + FrG) (81 

tlgz = A-a(-A,qS -D$? + h'$.q -+-F&J 

a,, = m-l -I- A-% (A# + B,P - 2Fl~t) 

~31 = k,-* (--A,q -I- F,% yss = A’+ t&S - F,‘I), 1’33 = 

A-3 (45 - E,rl) 

We introduce the mapping point with coordinates x=X, y = Y on the tangent plane to 
the body surfaces. Then, the necessary conditions fox the approach velocity to increase 
(negative right-hand side of Eq.(6)) is that the straight line and circle must intersect /3/ 

Cf* is the ratio of the force of friction to the normal component of the reaction) 

agfr -t- a3aY f ass i yslMz + Y~J~~,,I-~wM,=O, xa+ya= f*” (9) 

The circle is the section of the circular cone whose axis is along the normal to the 
surfaces, f* <ffo (f. is the coefficient of sliding friction; the equation is obtained only 
in the case of pure sliding, when there is no revolution and the cone is the cone of friction). 

There is as yet no adequate model of the interaction of rigid bodies which takes account 
of the dependence of the rolling and turning resistance moments on the normal reaction 
momentum and the state of the body during collision. The usual approach, based on using the 
coefficients of rolling friction and revolving friction, obtained empirically for pure rolling 
and pure turning, does not in general /9/ give a realistic description of the motion. 

By using differential Eq.(6), the conditions for intersection of the stright line and 
circle (Q), 

f* > I (as3 + y3dfx + ~~df, + ~3&, ) I bsla + a33P (10) 

and the expressions for the coefficients (8), we can prove some properties of the approach 
and the conditions under which TI occurs (impact resulting from an increase of the approach 
velocity even when the initial approach velocity is zero). 

lo . Rolling friction and revolving friction do not affect the variation of the approach 
velocity, and TI is impossible for any finite values of the coefficient of sliding friction 
i$<hyk :i.,"" centre of mass of the body is on the normal to the surface (E = q = O), since 

dy,ldr = uQS > 0. 
2O. Rolling friction does not affect the variation of the approach velocity (or the 

conditions for TI to occur), if we have (ySr = ysa-= 0) 

E/q = AJF, = F,IB, 

3O. Revolving friction does not affect the variation of the approach velocity if (yss=O) 
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D,5, - E,q = 0 

A direct check shows that yz3 = (1 in particular when one of the principal diameters of 
the central ellipsoid of inertia is perpendicular to the tangent plane to a surface at the 
point of contact. 

4O. For the special orientation of the rigid body indicated in Para.3O with the extra 
condition 5 = 0 (the centre of mass is located on the tangent plane), the variation of 
approach velocity is determined solely by the rolling friction, and TI can arise when we have 
(the necessary condition) 

If the rolling friction is found as usual ilO/ 
friction k (the moment of the couple is taken to be 
rolling), i.e., 

MS = -ko,/ [ o 1, M” = -km,/ 1 w 

then TI cannot arise due to rolling friction when k 
the inequality 

with the aid of the coefficient of rolling 
opposite to the angular velocity of 

W&Z)'/. 

small, in accordance with 

(ii) 

If the inequality (11) is of opposite sign, there is a sector of directions of angular 
velocity of rolling in which 

Consequently, regardless of the principal vector of friction forces and the revolving 
friction couple (a,, = (rs2= 0, yss = O), TI is caused solely by rolling friction. 

So. The effect of turning on the conditions for TI to occur shows itself also in a 
variation of the coefficient f*. If we take account of a small finite area of contact surface, 
it can be shown /9/ that, for motions close to pure revolution, the coefficient f* depends 
linearly on the ratio (sz + vf)*'*! 1 wQr 1 (r is the radius of the locally spherical contact 
surface). Hence, for sufficiently large angular velocity of revolution, we can in general 
avoid the occurrence of TI (a change in the sign of the inequality in (10)). 

60. In the case of plane motion of a rigid body parallel to the coordinate plane which 
passes through the common normal, we have the following expressions for the coefficients (8): 

In this case, condition (10) becomes 

f* > I 5-l wrl-’ + rl - MS) I 112) 

If we neglect the moment of rolling friction, (12) is the same as the well-known condition 
for motion to be impossible or not unique (depending on the direction of the sliding velocity) 
/4/. If we use the coefficient k of rolling friction, then (12) becomes (o is the algebraic 
angular velocity of rolling) 

I* > I 5-l (PW + 9 + /&I Ia 1-11 I (0 = 4 (13) 

From (13) we can draw obvious conclusions about the influence of rolling friction 
(depending on the direction of rotation and on the size of k) on the conditions for TI to 
occur with plane motion. 
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THE SYNCHRONIZATION OF OSCILLATORS WHICH INTERACT VIA A MEDIUM* 

E.E. SHNOL 

A system of N non-linear oscilators which influence one another only as 
aresultof their action on a common medium, is considered. The stability 
of the synchronized or partially synchronized periodic oscillations in 
the system is discussed. Special attention is paid to the case when 
N*_)4. The problem of the synchronization of such oscillators, which do 
not interact directly but only indirectly via a common medium, is not 
new /l, 2/. It is usually assumed that the interaction is weak, so 
that the oscillators only slightly change their frequency and shape, 
The term "synchronization'* usually means one of two effects: 1) the 
establishment of identical oscillations (in shape and phase) in a system 
of identical oscillators, 2) the establishment of a common period of 
oscillation in a system of identical or structurally similar oscillators. 
Biological problems which lead to a synchronization problem are considered 
in /3, 41. 

1, The system and special features of the problem. We consider N objects of 
the same nature which have a stable selfexcited oscillatory mode in a band of fixed external 
conditions. The objects (oscillators) are located in a medium which they influence and 
thereby influence one another. We assume that the action of the oscillators on the medium 
is additive. 

In biological applications, the number N of objects is usually very large, and the 
influence of one oscillator on the medium is very small. For instance, if we are speaking of 
the biological oscillations inherent in a living cell, the action of an individual cell on 
the medium is proportional to the ratio of the cell volume v to the volume V of the medium 
in which there are no cells. 

In the elementary case of identical oscillators, the equations describing the system can 
be written as (the dot denotes differentiation with respect to time t) 

g (St xk); 5k*=h(S,5p); k=i,...,N 
k=l 

g (s, z) = go) (s) + yg(” (s, x), y = NUN (1.2) 

Here, the vector s refers to the medium and x to the oscillators (in general, dimsf 
dimx), g'*)(s) describes the change in the medium regardless of its "filling", and &?(s,z) is 
the influence of the oscillators on the medium. It is assumed below that (given a fixed 
"density" y,) g&z) is independent of N. 

In biological (as distinct from technical) applications, synchronization is usually of 
interest when it sets in rapidly (in a fairly small number of periods) and is preserved when 
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